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: A doubleheader approach to the computation of a ring-symmetric spacecraft exhaust plume is
" presented. We plan to use the present analytic approximation in conjunction with a model for
n backflow from the exhaust plume of an orbiting spacecraft, induced by oncoming ambient molecules.

o This process takes place in the regions of centered rarefaction waves (CRW) that flank the central
'8 plume. A semi-inverse marching characteristic scheme (SIMA) is formulated specifically for accurate
. computation of a CRW in two-dimensional axisymmetric coordinates, as a variant of the classical
ﬁ inverse marching method. It replicates a Prandtl-Meyer flow exactly, resulting in an accurate
iyl marching scheme for axisymmetric CRW. The analytic approximation to a ring-symmetric CRW is
formulated in two phases. An analysis of the flow near the corner using characteristic coordinates,
results in fan-wise gradients of flow variables (Riemann invariants). These gradients are then used to
‘:',n.g extrapolate the flow field along fan characteristics from the presumably Prandtl-Meyer flow at the
Ot corner, while matching exactly the cylindrically diverging flow along the unreflected portion of the
W CRW leading characteristic. The resulting approximation compares favorably with numerical
.. (SIMA) computations, even at about 10 corner radii away from the corner. Closed-form expressions
o, are obtained for lateral plume opacity at the CRW fringes.
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NOMENCLATURE

spacecraft radius (m)

breakdown parameter [2,10]

characteristic lines inclined at (0 £ p)

molecular diameter (hard spheres) (m)

streamtube area ratio

special function obtained by integration across Prandtl-Meyer fan
Mach number

number density (molecules/m®)

pressure (Pa)

coordinate along streamlines (m)

temperature (K)

flow velocity (m./sec)

axial cartesian coordinate

radial cartesian coordinate

fan-wise characteristic coordinate (m)

fan-transverse characteristic coordinate

ratio of specific heats

power for area ratio radial power-law

coefficient tor flow angle 18) radial logarithmic law
length coordinate along fan characteristics (C ") (m)
inclination of flow veiocity vector

power for cos@ radial power-law

coetficient for characteristic angie 1y ) radial logarithmic law
Mach angle (sing = 1/M)

Prandtl-Mever function

length coordinate along transverse (C ~ ) characteristic
coilision cross-section ®D?* u;mz)

molecular opacity fexpected number of collisions by a fast invading molecule)
collision frequency (sec™')

inciination of €~ churacteristic: O —p

inclination of C* characteristic : 0 = n

svmmetry index (0 - pianar flow, | - axisvmmetric tlow)
the fraction (y+ 1)/(:4-1)
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1. INTRODUCTION

The exhaust of a large space-based HF/DF chemical laser can be idealized as a zero-thrust
supersonic ring-symmetric jet (Figure 1-1). Assuming a vacuum background, the exhaust plume is
always flanked by a pair of ring-symmetric rarefaction waves centered at the nozzle lips (Figure 1-1).
When ambient molecules traveling at orbital speed impinge obliquely at the centered rarefaction wave
(CRW), they give rise to a molecular backflow of scattered exhaust species. This effect constitutes a
poténtially significant contribution to spacecraft contamination {1].

Most ambient molecules are stopped within several mean free paths from their point of entry into
the plume. A quantitative estimate of ambient back-scattering would thus depend on the flow field at
the outer (hypersonic) fringes of the lip-centered CRW. Even though the flow in those regions is
generally past the point of continuum breakdown [2], the density there is reasonably well
approximated by the continuum flow field, as demonstrated by Bird’s Monte-Carlo simulation of a
Prandtl-Meyer expansion to vacuum [3]. The evaluation of ambient scattering thus calls for an
ancillary computational procedure capable of rendering the continuum flow field at a large number of
points in the ring-symmetric CRW of 2n HF;DF laser exhaust plume.

The purpose or this report is to present a doubleheader approach to this CFD task. consisting oi’a
speciallv  rormuiated iinite Jifference scheme valid throughout the plume and an anaivtc
approximation for the CRW portion of the flow. This approach is motivated by the need o
approximate the CRW ilow leld in 1 simple and computationally aifordable way. A inite ditference
.ntegration OV marching out from the nozzie exit to every point tn the CRW where ambient scattering
is 10 be evaiuated. i1s not affordable due o the verv large aumber of such pownts. An interpolation
trom a 2-D grid of pre-coniputed points is atfordable but rather cumbersome and complex tif only ior
the need (0 maintain an ¢iaborate 2-D finite difference code that would make its output available to
the ambient scattering code). We propose to obviate both the finite difference computation and
subsequent interpolations by constructing an analytic approximation to a ring-svinmetric CRW. The
dnite Jdiference code “JET” that was written .or the purpose of computing a ring-stmmetric
supersonic {low field. is therebv relegated to the role of aiding in the verification of the anaivtic

approximation. We 2iso Jse this code to obtain whole-plume solutions {or the purpose of illustrating

some teatures ot the :low ileid by means of graphic output.

The finite Jdifference scheme used for computing the exhaust tlow tield. is a modilication of the

well-known inverse marching characteristic method [4]. Rather than using the twvo velocity
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components often recommended in the literature [4], we use the two Riemann invariants (vx0) as
flow variables. The key element in the scheme is a Semi-Inverse Marching Algorithm (SIMA). The
flow is assumed to exit the spacecraft with a uniform supersonic speed in the radial (y) direction,
which is hence the marching direction. New grid points are determined by the forward intersection of
continuous C ¥ (fan) characteristics with a new line y=y _ , whereas segments of the transverse
C™ characteristic lines are reversely extended from each new grid point and require interpolation
between old line grid points (y=Y,,)- This modified marching scheme is analogous to existing time
dependent 1-D characteristics methods (see Sections 19-6(a) and 19-6(j) in [4] ); however, we found no
reference to the use of Riemann invariants as flow variables in a CRW computation in order to
reduce interpolation errors.

The resulting SIMA scheme replicates a planar CRW (Prandtl-Mever flow) exactly, lending an
extra measure of credibility to its accuracy in computing a ring-symmetric CRW. For the new line
segment lying outside the CRW, grid points are evenly distributed through the segment, and a fully
inverse marching scheme is used. The SIMA scheme is described briefly in chapter 2 ; it was
implemented in a FORTRAN code named "JET", which was specifically written for the computation
of ring-jets having a vacuum background. A detailed description of the code JET and the finite
difference schemes on which it is founded will be given in a future report [11] .

Our anaivtic approximation o a ring-svmmetric CRW is formuiated as follows. [n a pianar
i Prandti-Mevery CRW the flow is uniform along :he characteristic lines that fan out from the corner
iwe assume it is the €7 jamuivy. [n the ring-svmmertric case the tlow near the corner approaches
asvmproticaily a corresponding oianar CRW (low, which we term the associate CRW. However,
the gradients aiong C ™ characternstics at the corner of a ring-svmmetric CRW do not vanish as in a
planar CRW. The kev idea is thus: evaiuate ilow gradients in C T directions at the corner. then
use them to extrapolate the associate CRW aiong C™ lines to a linite distance from the corner.
This extrapoiation constitutes an approximation to the ring-svmmetric CRW. Our present approach
is analogous to the GRP (Generalized Riemann Probiem) analvsis from which high resolution upwind
schiemes (or ume Jependent Euler eyuation were derived [S.0] . In terms of speciiic resuits, however,

it 1s quite different {rom the original GRP analysis.

A perturbation approach to steady supersonic tlow in two-dimensional space (piane or axial
symmetry) using characteristic coordinates. nas been developed by Ostwatitsch and colleagues [7].

Their work also inciuded treatment of axisvmmetric CRW. However, their approach is formuiated in

terms ob small perturbation relative to a uniform supersonic tflow. In our analysis the CRW is




assumed to span the range from some finite pressure to vacuum, and the perturbation scheme
consists of regarding the axisymmetric terms in the governing equations as causing a small deviation
from a Prandtl-Meyer flow. Our analytic approximation to a ring-symmetric CRW is presented in
chapter 3 and Appendix A.

The present approach to the approximation of a ring-symmetric CRW can also be adapted to treat
other axisymmetric centered waves, such as the divergent lip-centered CRW at an axisymmetric
nozzle exit, or the cylindrically converging CRW at the base corner of an axisymmetric projectile
moving at supersonic speed in air.

A series of computations were performed on a sample case of typical HF/DF laser exhaust. A
comparison was made between results of numerical integration (SIMA) and the method of matched
approXimation to the ring-symmetric CRW . In particular, molecular opacity (expected number of
collisions along a path of a fast penetrating molecule) was evaluated. Reasonable agreement between
SIMA and approximated opacity was demonstrated. These results and their analysis are presented in
chapter 4.

It seems that the present approach can be adapted to other problems calling for opacity of the

CRW region in a ring-svmmetric or axisvmmetric exhaust plume.
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2. THE FINITE DIFFERENCE SCHEMES FOR COMPUTING RING - JETS

The free expansion of a spacecraft exhaust plume is idealized in our study as a steady supersonic
isentropic flow in two-dimensional axisymmetric coordinates, with a zero-pressure background. The
most accurate finite difference scheme for this type of flow is the well known method o
characteristics [8]. At an earlier phase of the present laser exhaust study, a code AXSYM [9] was
written for the computation of ring-jet flow fields, using the direct method of characteristics. A
notorious shortcoming of this method is that it vields the flow field at a set of grid points formed by
the (oblique) intersection of the C~ and C% families of characteristic lines. The resulting grid is
highly irregular (especially at regions of hypersonic flow), and it also requires the retention of grid-
image matrices for the several regions formed by intersection of families of characteristic lines and
their reflection from the mid-plane of symmetry (X=0).

A commonly accepted remedy to these shortcomings is the inverse marching characteristic scheme
[4). The marching is in the downstream direction, i.e., the y direction in our case. The grid points
are located on a succession of constant Yy rows, thereby introducing a measure of regularity in the
solution grid. Computer memory requirements are drastically reduced : just two rows are kept in
core memory - an “old” line of grid points and a “new” line of grid points. For reasons which will be
ciucidated beiow, the tlow variabies in our scheme are the Riemann invariants (v=8) . The
antegraton ot of the tlow equations in characteristic form {sometimes referred to as compatibility
reiations {4]), is performed bv a combination of two marching schemes. At grid points outside the
CRW we use the convenuonal inverse marching scheme. At grid points within the CRW. we use a
moditied scheme named SIMA - Semu Inverse Marching Algorithm. tatlored specificallv to render
accurate computation or a centered wave flow. In the sequel., we outline both schemes and describe
the procedure by which they are combined to vield the flow tield of a ring-svmmetric jet. More

intormation on the schemes and the code JET will be provided in a tuture report {11] .

The basic building block of both inverse and semi-inverse marching schemes is the evaluation of
tlow variabies at a new grid point X; on the new line (y=y . ). given the flow at a row of grid
points on the old line (y=y, ). which is initially the nozzle exit surface where flow is assumed
aniform Figure 2-1).

Consider first the inverse marching scheme (Figure 2-la). The trace points X, . N\, are
determined ov reversely extending C~ and C* characteristic lines from point (X,.¥,.,} to the old

line (Figure 2-la). The characteristic segments are approximated by straight line segments, whose

)
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slopes are initially taken from linearly-interpolated flow properties at the old point (X,,y,4)- Trace
points X, and X, are assigned values of flow variables obtained by linear interpolation between their
respective nearest-neighbor (old) grid points.

The compatibility relations along segments of C~ and C +  characteristic lines in finite difference
form are now solved, vielding the flow variables (v£0) at the new grid point :

Along ct ... (v=0), = (v=0), + @ sinp,, sind,, An [/ y,,
(2-1)

Along C~ .... (v+0),=(v+0), + o sinp, , sin,, AL [y,

Where AE , An are the length of the respective characteristic segments; indices 14, 24 refer to
centered segment values obtained by averaging the values of variables at segment endpoints. The
svmmetry index @ is as follows: ®=0 for plane flow, ®w=1 for axisvmmetric flow. The usual
isentropic relation [8] is used to determine p from v.

Equation (2-1) is now regarded as an implicit relation between the flow variables at the new grid
point X; and the interpolated flow variables at the trace points X, and X, . An updated pair of
trace points is re-computed from an updated value of flow variables at the new grid point. and the

procedure is repeated until convergence is established.

The Semi Inverse Marching Algorithm {SIMA) is a relatively simple modification of the inverse
marching scheme. Rather than seek a solution on a new grid point X, whose location is unreiated
to the row of old grid points, we Jetermine X, by the forward extension ofa C *  characteristic line
from an old grid point X, (Figure 2-1b). The trace point X, is determined by reversely extending
the C~ characteristic line from the new grid point, just as in the inverse marching scheme. The
same compatibility equation (2-1) is solved for the flow at the new grid point, except for an obvious
geometrical modification : whereas in the inverse marching scheme the trace points X, and X, ‘were
re-computed in each iteration. the SIMA variant calls for re-computing the new grid point X, and

the trace point X, until convergence is established.

The resulting scheme replicates a (planar) Prandtl-Mever flow exactlv. The reason for that is the
combination of the semi-inverse marching idea with the choice of Riemann invariants as tlow
variables. Due to this choice. the compatibility relation along the fan characteristics (C 1) reduces to
the exact relation (v—0)=constant. The equation along C~ still requires interpolation in old
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values of (v+0). However,ina C + Prandtl-Meyer flow (v+0) is wniformly constant, so that
interpolation does not introduce any truncation errors. It is noted that this feature is lost if any other
flow variable is used in conjunction with a SIMA scheme for computing the flow in a CRW.

The boundary conditions are quite simple. Marching starts out from the nozzle exit surface where
the flow is assumed uniform. The flow is bounded on the left by a mid-plane of symmetry (X=0),
where the boundary condition is simply 0=90°. On the vacuum side we approximate the idealized
zero-pressure background by terminating the computation at a high Mach number (fan) characteristic
line (typically M =34 at the corner). It is noted that as a result of ending the computation at a
characteristic line, the total mass flow through a solution line Y,,, decreases slightly as y, .
increases.

A sample computation performed by the code JET is displayed in Figure 2-2. The CRW region is
clearly shown as bounded by the final C * characteristic line on the vacuum side, and by the leading
C + characteristic and its reflection, on the other side. The code JET can also plot an assortment of
special lines: characteristics, continuum breakdown lines [2], lines of constant Mach number,
streamlines and lines of constant lateral molecular opacity (expected number of collisions by a fast
molecule entering the plume in the x direction).
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3. ANALYTIC APPROXIMATION OF RING-SYMMETRIC
CENTERED RAREFACTION WAVES

The procedure for the analytic approximation of a ring-symmetric CRW comprises of two distinct
phases. The first phase is an analysis of the flow field near the corner of a ring-symmetric CRW,
resulting in fan-wise gradients of flow variables at the corner. The second phase is an extrapolation
of the associate CRW at the corner, using the fan-wise gradients obtained in the analytic phase. A
concise description of each phase is given below, followed by a detailed presentation in sections 3.1,
3.2 and 3.3.

The first phase is an analysis of the flow near the corner of a ring-symmetric CRW. [t is noted
that in a planar C* CRW all directional derivatives of flow variables along ct vanish, but
directional derivatives in any non Cc* direction increase beyond bound as the point at which they
are evaluated approaches the corner. This suggests that the analysis of a ring-symmetric CRW as a
perturbation of its associate CRW should be formulated in characteristic coordinates. The goal of
this analysis would be to derive closed-form expressions for the C% directional derivatives of flow
variables at the corner. A detailed presentation of the analytic phase is given in section 3.1 below.

In the second nhase, the C M gradients at the corner are used to extrapolate the associate CRW
at the corner to some finite distance along C7 characteristic lines. It is this extrapolation that
constitutes our analvtic approximation to a ring-svmmetric CRW. Rather than merelv extend the
associate CRW through linear extrapolation (i.e., 2 Tavlor series truncated after the first-order term)
using the corner C 7T derivatives. we opt for a specially formulated “matched extrapolation”
scheme. where the extended tlow field is matched to conform exactly to the tlow along the pre-
reflection segment of the leading characteristic C+(B,) . The result is a ring-svmmetric CRW
approximation that maintains reasonabie accuracy levels up to several corner radii awav from the
corner — a considerably larger range of validity than that of a linear (unmatched) extrapolation. The

matched extrapolation is described in section 3.2 below.

Finally we consider an "inverse problem” which is stated as follows. Given a point (X,,Y,) within a
ring-svmmetric CRW, find the {low variabies at this point. The matched extrapolation scheme is
geared to deliver the flow field along entire C * characteristic lines (including the determination of
the characteristic lines themselves in (X.¥) coordinates). We do not know apriori the line C7T
passing through (X,.¥,) . and we seek an algorithm for obtaining the flow at (X,,V,) without
resorting to excessive numerical integrations. The solution to the inverse problem relies on the

observation that C¥ lines are usually just slightlv curved; it is presented in section 3.3 below.
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3.1 Analysis of Ring-Symmetric CRW

Consider a 2-D axisymmetric steady inviscid flow of an ideal gas. If the flow is also supersonic,

isentropic and irrotational, the governing equations in characteristic form using the Riemann
invariants as flow variables [8] are :

Along C*@) .... (v=0), = sinn(@,p) sinb(a,B) nG(w.B) / y(@.p)
Along C™(a) .... (v+8)g = sinp(a,p) sinb(a,p) Sp@p) [ y(@,p)
(3.1-1)
Directionof C¥(B) .... w(ap) = 6(a.p) + p(ap)
Directionof C~ (a) .... x(ap) = 6(a,p) — p(a.p)

where (a,B) are the characteristic coordinates , a being constant along C™~ (a) and B being
constant along C+(B). &(a.p) and n(a,p) are the distance (from an as vet unspecified origin)
along C~ and CT respectively. We note that (&,n) would not qualify as an alternate set of

characteristic coordinates , since in general 3 is not constant along C~ and likewise n is not
constant along C ™.

The specitic definition of (a.p) , S(.p) and na.p) is now tailored to the needs of the intended
P -
ring-symmetric CRW anaiysis. To tix ideas we considera C +* CRW : it is then natural to stipulate

that a=0 and N=0 art the corner. Denoting by index | the leading characteristic C"(BI) , we
define the characteristic coordinates @ and P as follows :

a = na.p,)

(3.1-2)
B = M0.p)

Where M(0,B) is the Mach number at the associate CRW. We shall generally use B in lieu of
M(0.p) , in order to simplifv notation while maintaining the important distinction between the
associate Mach number M(0.p) and the Mach number within the ring-svmmetric CRW M(a.p) .
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Let Q(a,p) denote any flow variable. We are seeking the corner gradient Q(0,8) in a ring-

symmetric CRW. Since any flow variable Q can be expressed as function of (v£89) , Q, can
likewise be expressed in terms of (v+0) and (v+0), . Consequently, we should seek to derive
expressions for (v+0), at a=0, from the governing equations (3.1-1). These equations are in a
particularly simple form, in that only one Riemann invariant appears in each equation. Thus, the
corner gradient (v—49), is already given by (3.1-1) upon setting a=0 . We now turn to the

derivation of (v+ 0)u .

A closed form expression for (v+8), can be derived from (3.1-1) as follows. Differentiate the
equation along C~ characteristics with respect to @ , set a=0 and then integrate the ensuing
relation with respect to B, from the leading characteristic C +(Bl) to some internal characteristic
C+(B) . Since C~ (a) characteristic lines within the CRW shrink in size as @ approaches zero,
§B(0,B)=0 . Hence, the only non zero term left for the P integration along C ™ (0) is the term
containing éup(O,B) . The result is the following expressions for (v:l:O)a at the corner :

[v-0),J0.8) = sinn(0.p) sin6(0,8) n,(0.8) / y(0.p)
(3.1-3)

4 B
[v+),]0.8) = sinn0.8) / v0.8) + [y0B)]" | sinn(o.m) sind(0.m) & p(0-m) dm
1

The boundary condition for the integration of (v+9)a’, was obtained bv noting that along the

leading characteristic C *(Bl) :
0(a.p) = nf2
O (ap) =0 (3.1-4)
(v—=8), = sinpa.p)) / yta.p,)
We also note that at the corner y(0.p) = y_ for any B . However, we shall maintain the
notation Y(a.p) and y(0.p) in order to emphasize that Y(«.B) is a field variable. The geometrical

derivatives éu”(().ﬂ) and n(0.p) are readily derived from standard expressions of the associate
CRW (Prandtl-Mever flow, see Appendix A for details). They are given by :

12
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608 = {[1+ @028’ Y1+ @-vr28, 1} {(8,- )i(s*- 1)}
(3.1-5)

B OB = @@+ /9 0,0 B (8°=1)" [1+ @028

Now, equations (3.1-3) and (3.1-5) constitute closed form expressions for the corner gradients
(v£0), . The only additional information needed is the standard Prandtl-Mever expressions for
0(08) and v(0,B) in the associate CRW (Appendix A). The integral in (3.1-3) cannot be expressed
in terms of elementary functions ; however, it is readily evaluated by quadrature.

This concludes the analytic phase of the ring-symmetric CRW approximation. We now turn to the
task of deriving closed-form expressions approximating the flow in a ring-symmetric CRW using the
corner gradients (v&9), .

3.2 The Matched Extrapolation Scheme

We seek an approximation to a ring-symmetric CRW that would be valid up to several corner radii
‘rom the corner. A direct substitution of the C™ corner derivatives ¢3.1-3) m a Tavlor senies
truncated atter the [irst-order term. could be made. The result would be an expression where the
iocal deviation of the ring-symmetric CRW trom the corresponding associate CRW 1s nroportionar 0

Ay = (¥y—Y¥, . ie. a ‘inear extrapolation”.

It turns out that in this case it is possibie to formuiate a “matched extrapolation” scheme.
where the the aforementioned deviation depends nonlinearly on Ay, which would be consistent o
first-order in (Ay/yc) with the corresponding lineur extrapolation. This extrapolation is formu'uted
to match exactly the tlow along the leading characteristic C +(B|). The advantage ot this improved
scheme is that it maintains vetter iccuracy at (Ay/y,) = O(1) than tne linear extrapoiation. =ven

though either scheme is formallv first-order accurate near the corner.

The impiementation or the matched scheme 1s etfected through a change in flow variables from
(v.0) to (£.8), where f is the streamtube area ratio function [8] . linked to the Prandtl-Mever

function and to the flow Mach number through the isentropic relations :
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f=M" {@i+n [1+@-nm e

2 1/2
afff = (M*=1)"" av (3.2-1)
-l 2,-1 2 12

av =M [1+@-ym] (M*-1)" am

We note that relations (3.2-1) hold in any steady flow where entropy is uniformly constant
(homentropic flow). Thus, the thermodynamic flow variables M , f and v can be used
interchangeably. The replacement of v by f is motivated by reasons which will be made clear in
the sequel.

Let us find the expression for fa(O,B) . This is done by first eliminating Oa(O,B) by summing

(v+90), and (v—0), in (3.1-3), obtaining an expression for v (0.p) . Then, using the isentropic
relations (3.2-1) to replace v, by fa and using (3.1-5) for na(o,[)) and éap(O,B) we finally get :

f0.p) / (0.3) = 3(0.5) y (0.5 / y(0.B)

505 = (12 {(8" - 1)""*/ B, n0.p) sinyop} +

2 (2
(/2 {(B =1) " sinB0.p) /Bsin\u(O.B)} + ((y+ DJ23-y) HP) 3.2-0

-

HP) = ((3-n/4) {(Bz— 1)3/4 [l +((‘/-l)/2)B:]:{/2h " / simu(O.B)} * |

B o2y
o[- wg-namt] T

Vs NS
(m*-1) "™ m* sinB(0.m) dm

where the specially defined tunction H(P) has been normalized by a preceding factor so that
H(x) = 1. A wpical case of H(P) is shown in Figure 3-1. By pre-computing (and storing) values
of H(P) as furction of 1/p at a sequence of points (tvpically 30 points), H(B) can rcadily be

evaluated by linear interpolation.
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Consider equations (3.2-2) at the leading characteristic C+([$|) . It is readily verified that |
H(B,)=0 and §(0,8,)=1. Consequently, equation (3.2-2) assumes the following form at the leading |
characteristic C +(B NE |

f,(0.8)/f(0.8,) = y,(0.8)/y(0,B,) (3.2-3)

Now, along C+(B]) the relation between fa and y, can be derived directly from the the
equation along ct for (V—O)a (equation (3.1-1)), since along C+(Bl) 9a=0, and v, can be
replaced by an “isentropically equivalent” expression containing f and fa according to the
isentropic relation (3.2-1). The result is the following differential relation which holds along the
entire leading characteristic C @ ;) of the ring-symmetric CRW :

f(aBp/f(aB) = y(aB)/y@p) (3.2-4)

This differential relation can be readily integrated, yielding f(«,B,)/y(e,p,)= constant . Indeed,
this result is consistent with the very definition of f as an area ratio function, since the flow crossing

the leading characteristic C + (Bl) diverges with cylindrical symmetry.

The analogy between (3.2-3) and (3.2-4) is appealing. Can the first equation of (3.2-2) be recast in
a form that would vieid the exact retation (3.2-4) along C"'(B‘) . rather than the “linearized”
relation +3.2-33 Y Let us formaiiv rewrite the {irst equation of (3.2-2) as it it were valid for anv

a 2 0 notiustior ¢ =0:
flap/fiapy = oww.py [yﬂ(a.l})/y(a.B)] (.25

Since o(«.p) is not known to us (indeed. it is defined bv the preceding equation). we introduce
the foilowing assumption which corstitutes the Aey approximation of our matched extrapciation

scheme :
éta.Py = o0.p (3.2-6)

Using taus approximation, equation (3.2-3) is readily integrated, vielding a relation between

f and ¥y that does not explicitly involve the function y(a.p):

0.5
fad) = f0p [yap/yop] ™ (3

[
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This is the matched extrapolation of the area function f ; it is consistent with the linear
extrapolation of f near the corner as would be derived from (3.2-2), and it is exact along the leading
characteristic C+(B]) . Does this matching assure a reasonable level of accuracy throughout the
ring-symmetric CRW ? We defer the consideration of this question to chapter 4, where the subject of

accuracy will be discussed in conjunction with comparison to finite-difference computations using the
code JET.

Let us examine the range of variation of 6(0,) (Figure 3-2). Along the leading characteristic
C +(B1) we have 8(0,8,) =1, which corresponds to a cylindrically divergent flow. At high values
of B the power §(0,B) increases almost monotonically to 8(0,%) = 2/(3-y) . (It actually attains a
maximum value slightly higher than 8(0,90) -- see Figure 3-2). Assuming that a dilute gas has a
specific heats ratio ¥ < (5/3), the maximum value of &(0,%0) for any dilute gas is
6(0,%0) < (3/2), which corresponds to a power no larger than midway between the cvlindrical
power (6= 1) and the spherical power (6 =2).

The power-law form of approximation (3.2-7) to streamtube area ratio in a ring-symmetric CRW
suggests the following geometrical interpretation.

(a»  Consider the variation or area ratio along a particular streamtube. [t consists of the product of
two ractors : the “planar CRW” area ratio f(0.0) and a radiaf divergence factor. where the
radial power is function only of B . There is some form of separation cf variables in 13.2-7).
{t0.p) and 0(0.p) depend only on B which designates a «.haracterlxtu. line CT(P). The
radial divergence facter involves vy which designates points on C 7 (f). This 1s a direct

consequence of our key assumption (3.2-6).

tby  Consider the spacing between streamlines in the (X.Y) plane of a ring-svmmetric CRW. Thev
are stretched by a factor (y/yc)"‘o'l”‘l relative to corresponding streamlines in an otherwise
identical planar CRW. The stretching power vanishes at the leading characteristic C ™ (B,) and

increases 10 an asvmptetic value of (7-1)/(3-7) as B increases to inlinity.

(¢i AU very .arge distance rom the corner, one would expect streamtube cross-section area to
exhibit spnerical divergence, i.e, for a certain streamtube f should increase as y2 , regardless
of the value ot ¥ . The fact that our power-law approximation does not exhibit these features
indicates that it is an intermediate-range fit to the radially divergent CRW flow. Can a
matching scheme between the intermediate-range and the far-range flow regimes be formulated?

This ¢aestion is presently an open one.
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Any flow variable linked isentropically to f(a,p) can now be evaluated from the approximation
(3.2-7). The “kinematic” variable 6(a,p) , however, is not related to f(a,p) in this manner, so its
approximation is still pending.

A matched extrapolation scheme for 6(a,B) is now formulated in a manner consistent with the
scheme for f(a,p) . This is done by regarding equation (3.1-1) along C+(l3) as defining a
differential relation between ©(a,§) and y(a.p), since the differential relation between v(a.p) and
y(a.p) can be eliminated by virtue of (3.2-5) and the isentropic relation between v and f given in
(3.2-1). The result is a differential relation for 0(a,p) along C+(B) analogous to the relation
(3.2-5) for f(a,p):

0,(a.B) = z@B) [y (@.p/y@p]
(3.2-8)
&(a,p)= 8(a,p) tanp(at,p) — sinp(a,B) sinB(a,B) / siny(a,p)

Now we invoke the same argument that lead to the key approximation (3.2-6), namely, that &(a.p)
may be replaced by its associate CRW value &(0,B) . Hence, the matched extrapolation for 6(a.p)

is given by :

B(a.p) = 8(0.5) + e(0.5) Infy(a.B)/y(0.)]

-

(7]

]
[}
¥o)
-

€(0.p) = 4(0.p) tanu(0.0) = sinuc0.p) sin6(0.p) / siny(0.B)

Let us examine the {unction €(0.§) (Figure 3-3). We observe that 8(,0.B!,)= 0 in accordance with
the boundary condition at the leading characteristic C "'(B}) : 9 a.p=0. (Since by 3.2.8;
ga.p,)=0 forany a. this boundary condition cannot be considered as a guideline in improving the
6(a.p) extrapolation as was the case with the f(@.p) extrapolation). At large B: &(0.p)=2/(3-v) .
so that Be(0.B)—(7-1)/(3-v) . Consequently, the effect of ring svmmetry is to deflect streamlines
toward the radial direction (¥) refative to thetr associate CRW direction. by an amount that decreases

in the hypersonic portion of the CRW, as the inverse of the associate Mach number.

a:" An unexpected difficulty arises when the logarithmic extrapolation (3.2-9) for 0(«.f) is considered
Wl . .

'._:j for large y(a.p). At some sufliciently large ¥(a.p), O(a.p) will exceed m/2. which seems
3: physically unrealistic. A possible remedv would be to replace (3.2-9) by a modified extrapolation
- ’ obtained as follows. Multiply (3.2-8) by tanB(«.p), and invoke the modified approximating
ot
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assumption that  &(a,p) tan6(a,p) may be replaced by ¢0,B) tan0(0f). Since
d(tanz) = — d(In(cosz)) , the result is the following power-law extrapolation :
- K(0,p)
cosB(a,B) = cos8(0,8) [y(a.B)/y(0.)] ©F
(3.2-10)
K(0,8) = £(0,B) tanB(0,p)

We notice that by this power-law approximation 8(a,B) cannot exceed m/2. Also. in applving
(3.2-10) care should be exercised near p= Bl , since K(0,,) is singular. However, a simple analysis
shows that k(0,8) approaches a finite limit at B, , which can be expressed in closed form, and since
cose(O,Bl)=0 the boundary condition cos@(a,B,)=0 is fulfilled regardless of the value of k(0,B,) .
The power k(0,B) for a typical case is shown in Figure 3-4.

One more variable is needed to complete the approximation to the ring-symmetric CRW : the
C +(B) characteristic direction y(a,B) . It is simply given by :

v(a.p) = 6(a.p) + p(a,p) (3.2-11)

where O(a.p) is given by either (3.2-9) or (3.2-10). The Mach angle ma.f) is obtained frem

fta.p) through the isentropic reiation (3.2-1). where f(a.}) is given by the aporoximation (2.2-7).

This concludes the specification ot a ring-svmmetric CRW through matched extrapolation ot the
associate CRW . To obtain the tlow fieid of a particular ring-svmmetric CRW, one :integrates the
relation defining C7(P). ie.. dX=coty dy, while evaluating the flow variables using the
atorementioned approximations. The resuit s tlow field information at a series of points (X.V) aicng
C T(P) characteristic lines.

There remains one more approximation task : the “inverse problem’, which is stated as toilows,
Given a point (X,.Y,) in the ning-symmetric CRW, trace “inversely’ the characteristic line through 1.
and hence find the flow variables solely at (X,¥y) . using the matched extrapolation scheme. An

eilicient method for resolving the inverse orobiem is Jescribed in section 3.3 below.
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3.3 The Inverse Problem
o
, Consider the following application of the present approximation to a ring-symmetric CRW. A
\ physical model is related to the flow in a ring-symmetric CRW. The computation scheme of that
'y model requires flow variables at a large number of points (Xg:Yy) Wwithin the flow field. The
v implementation of such a model calls for an efficient algorithm capable of providing flow variables at
d ] . . . . .
thy points (X,,¥,) . Wwithout resorting to computation of the flow at a surrounding cluster of points, or
along a set of adjacent characteristic lines.
ot
§
' It is observed that through all but the low supersonic portion of a ring-symmetric CRW, the C +
" characteristics are nearly straight lines. This suggests the following approximation procedure for the
7 inverse problem. Assume as a first guess that C + (B) through point (Xg:¥g) is a straight line; then
e:: correct the resulting value of B by finding the small deviation of C +(B) from a straight line, using
J
" a linearized approximation to wy(a,p) .
NS
" To do that we need a closed-form expression for w(a,B) = y(0,8) . The implicit definition (3.2-11)
: y will not be adequate. Instead, we seek an extrapolation scheme formulated directly for w(a,p) .
.\i Following a procedure analogous to that bv which the f(a.p) and 6(a.p) approximations were
; obtained. we get :
" v = iad [y @p/yap]
0',
g : I V).
. Map) = eap) ~ dap) [1+r-n2aMm7 (M =1) (3.3-1)
1,
; M = Ma.p)
g
; Again we invoke the argument that (3.3-1) is exact, but it involves the unknown functions g(a.p) .
'_{: o(a.p) and Mia.p). so that they ought to be approximated by their respective associate functions.
Y Le. €0.0). 6(0.p) and M(OP) . ¢ We might have retained the Mach number as M(w.p) and
approximate it through - 3.2-7) ¢ however, that would have made it impossible to obtain a closed-
:' form expression for the ensuing ¥ - integration). Thus, replacing Aa.p) by A(0.p) . we get:
. .
Y
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v(a,8) — w(0,8) = A(0,8) Iny(a.B)/y(0.8)]

(3.3-2)

AM0B) = £0.8) — 50.8) [1+(-0/2p°] (B*- 1)

The unknown B, is now to be determined by solving the equation :

y
Xy = X, + y" 0 coty(a,By) dy(a,py

c

(3.3-3)

To get an explicit solution for B, from (3.3-3), we “linearize” this equation by letting :

coty(a,By) = coty(0,8) — [ w@p) — w(o,

By ] / sinw(0,8y (3.3-4)

We substitute this approximation in (3.3-3) and we use the expression (3.3-2) for y(a,p). The y

integration can then be performed in closed form, yielding the following equation for B :

cotw(0.By) = (Xp=X) [ (¥~ ¥ *

I.vo Iyo/y) [ (Yo=Y ~ L] [A0.8y) / sin*w(0,8,)] (3.3-3)

When A(0.B) is sufficiently small, (3.3-5) can be solved for B, by repeatedly computing f, on

the lett side using a former iteration value of' B, on the right side. In this procedure, we also use the

associate CRW relation between \u(O,Bo) and
MOPBy=0.

Bo (see Appendix A). For the initial iteration we set

The accuracy of solving the inverse problem is not as good as that of the direct matched

extrapoiation. Additional errors are generated bv the linearization (3.3-4) and also by the

approximation (3.3-2) to w(a.p) which is interior to (3.2-11). Thus, along the leading characteristic

C+(B|) the direct approximation becomes exact, but the inverse procedure remains an

approximation.
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“i;:t The coefficient A(0,B) is usually fairly small (Figure 3-5). For large B the following asymptotic
",fé: expression is readily found from (3.3-2) : BA(0,8)=0, so that the accuracy of the inverse procedure
’EE:, improves as (X,,y,) moves into the hypersonic portion of the ring-symmetric CRW. If this accuracy
' is inadequate when (X,,y,) is near C+(Bl) , We can revert to solving (3.3-3) for P, by some
.;EE:I iterative scheme, performing the integration along C+(Do) numerically, while using the better
:::ﬁ:a _ approximation (3.2-11) for w(a,By) . Naturally, this procedure would entail a much higher
‘5::: expenditure of CPU time than the approximation (3.3-5).
g: | For the sake of completeness, there is one more point to discuss in regards to the inverse problem.
‘ When the iterative procedure of Eq. (3.3-5) involves values of B, sufficiently close to the value B,
e of the leading characteristic, a difficulty may arise. The reason is that while the leading characteristic
' is exactly replicated by the matched approximation, the “linearized” approximation to the leading
:5::: characteristic (obtained by computing X, as function of y, from Eq. (3.3-5) with Bo= Bl ), curves
E:E:': towards the interior of the CRW. This situation is depicted in Figure 3-6. Thus, the iteration
%::I? procedure of Eq. (3.3-5) would come up with a tentative solution having Bo < Bl for points (X,.¥g)
:' located between the exact and approximate leading characteristics (shaded area in Figure 3-6), which
‘::‘ is inconsistent since the range of acceptable values within the CRW is B, > B,. The remedy is
':E‘ simply to set B,=p, as the approximate solution to any point (Xy,¥o) within that "shaded area”.
3 To illustrate the magnitude of error introduced by this simplification. we show in Figure 3-6 the
gRon charactenistic corresponding to B=4.1 (versus B‘ =4 ). This difficuity, however, is probabiv of no
1% concern to ambient scattering appiications. since ambient molecuies are tvpically stopped at the outer
:Siv fringes {hypersonic portuon) of the ring-svmmetric CRW,
)
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Figure 3-6.

A

Characteristic Lines Extended from Corner, Demonstrating the "Gray Area”

between Exact and Linearized Leading Characteristics
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4.

RESULTS AND DISCUSSION

We now present computational results intended to exhibit some relevant features of ring-symmetric
supersonic jets, and to demonstrate the nature of our matched approximation to the CRW region of
the ring-jet flow field. A typical case of HF/DF laser exhaust was chosen [!,10] for these sample
computations. It is specified in Table 4-1 below.

Table 4-1. Typical Operating Conditions of HF/DF Laser Exhaust

Mole fractions [H] = .091 [HF] = .091 [H,] = .104
[DF] = .135 [He] = .579

Average molecular weight 7.27

Specific heats ratio 1.54

Stagnation temperature and density 2300 (K) and .0075 (kg’m3)

Exit Mach number 4.0

Molecular diameter (hard spheres) 2.5){10‘10 {m)

Spacecraft diameter 2.5 (my

Aperture of ring-nozzle 1.0 (m)
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4.1 Finite Difference Computation of Ring-Symmetric CRW

An accurate finite difference computation of the entire ring-symmetric CRW flow field was
performed by the code JET utilizing the SIMA scheme (Ch. 2). A brief description of the
computational procedure is now presented. Referring to Figure 4-1, the y marching step started at
0.01 (m) and was subsequently limited to half the step determined by the closest forward intersection
of pairs of C¥ characteristics extended from adjacent grid points. At the outset, the number of
lateral (X) grid intervals was 100, of which 60 were in the CRW and 40 spanned the nozzle exit.
SIMA scheme was applied to all CRW grid points which were determined by a fan of c™
characteristic lines indexed from k=1 (leading) to k=61 (final). These fan lines were chosen to have
equally spaced values of the Riemann invariant (v—0) at the corner. The flow at all remaining grid

points was computed via the inverse marching scheme (Ch. 2).

As the marching progressed, the leading characteristic (k=1) approached the mid-plane of
symmetry (X=0) and it became necessary to switch the first SIMA-computed characteristic to k=2,
then subsequently to k=3 and so on, until at y=24 (m) it reached the index k=19 (Figure 4-1).
The result is that in addition to the region designated as CRW (Figure 2-2), also the region roughly
coinciding with the oven triangle between k=19 on the left and the reflected characteristic k=1 on
the right, was computed via the STMA scheme.

4.2 Continuum Breakdown

In a source-like tlew of dense gas exhausung into vacuum. a breakdown of continuum ilow
nevitabiyv takes place 1t some point along each sireamtube {2]. [n a planar CRW « Prandti-Mever
tlow), the orecakdown surtace approaches asvmptotically a particular streamline as the distance from
the corner increases [XI0]. However, in a ring-svmmetric CRW the breakdown surface curves
towards the mud-plane ot svmmetry, reaching it at some finite radius. Two breakdown surtaces ‘were
traced in e JET cemputaton, corresponding to the plausible values or tiie breakdown parameter
B=0.05 and B=0.08 . theyv are shown in Figure 4-2. It is evident from this figure that most of the

rng-svmunetnic CRYW Les outside  -he breakdown surtuce.

Moreover. consider ambient scattering by molecules entering the CRW in the X direction. Most
of these moiecules wiil be stopped within a range for which the expected number of collisions with

exhaust moiecuies is = 1. In Figure 4-3 we show the line t=1 piotted {rom the JLT computation
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of the typical laser exhaust (Table 4-1). It is clear that virtually all ambient scattering will take place
outside the breakdown surface. Our model for estimating the molecular backflow induced by ambient
scattering, relies on the presumption that continuum flow holds throughout the rurefaction fan, even

at regions of near-vacuum. How can that approach be justified in view of the precediny discussion?

Consider a spherical source flow into vacuum [2] , where the breakdown surtace 1s 1n a region of
hypersonic flow. A special situation in regards to continuum breakdown exists in this 1dealized case.
The breakdown in continuum flow is first manifested by the failing of local temperature to adhere to
the isentropic relation with local density. In fact, “temperature” ceases to exist, since the random
component of molecular velocity does no longer have the (isotropic) Boltzmann distribution. Bv
contrast, conservation of mass helds regardless of continuum flow breakdown, so that by virtue of the

spherical symmetry, density decreases as 1 /R2 to arbitrarily large R.

As demonstrated by Bird's Monte Carlo simulation of a Prandtl-Mever flow [3] , an analogous
situation exists also in this self-similar flow field : the density follows quite closely the continuum
(self similar) solution, even in regions well downstream from points where the isentropic relation
between temperature and density has broken down. Since only density and flow velocity are needed
in order to estimate ambient scattering (see [1] . in particular the “cold” assumption). the foregoing

discussion provides 1 ‘ustification {or the use of continuum tlow approximaticn 1o this end.

4.3 The Matched Approximation

Consider a narticuiar characzeristic line ik =47V in the sample case computation i Figure 3-11. We
tocus on the variaucn of the three thermodvnamic variabies f/area ratior. M (Mach number) and v
(Prandt-Mever tunction). along this charactenstic line. These variables were computed via both the
SIMA scheme (Ch. 21 and the matched anproximation. and the results are shown in Figures 4-4, 4.3
and 2-6. As exnected. Mach number and area ratio both increase along the characteristic line. Jue to
the radiai divergence of the ilow. How weil is this variation predicted bv our martched

approximation’

The matched approximation tor therinodynamic variables is the radial power-law expression for
the area ratio (3.2-7). M and v are computed from f via the standard isentropic relations. The
following features are observed regarding the nature of the matched approximation in this sample

case i Figures 4-4, 4-3 and 4-6).
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(a) Both SIMA and matched approximation curves start out with equal corner gradients. This
constitutes a mutual validation for both the numerical integration scheme and the analytic
approximation, in the vicinity of the corner.

(b)  The approximated f (Figure 4-4) is undervalued, resulting in a correspondingly undervalued
Mach number (Figure 4-5). Had we opted for a linear extrapolation of f from the corner
along fan characteristics, it is evident from Figure 4-4 that f would have been even more
undervalued, and so would be the Mach number. Matched approximation is thus
demonstrated to be clearly superior in accuracy to linear extrapolation.

(c) What would be the quality of an approximation based on a linear extrapolation of v ? Using
this variable would be consistent with the fact that the analytic expression of fan-wise
gradients (3.1-3) is for gradients of the Riemann invariants.

From Figure 4-6 it is evident that a linearly extrapolated v would be grossly overvalued,
while the matched approximation for v is moderately undervalued. A linear extrapolation of
v would thus result in a grossly overvalued Mach number. (In fact, from Figure 4-6 it can be
estimated that this would result in M reaching infinity around y/y =4 ). This observation
is not inconsistent with (b) above, as may seem at first. The isentropic relations between f,
M and v are highly nonlinear, so that the quality of an approximation scheme depends on
the particular thermodvnamic variable chosen to be approximated (while the others are
evaluated from the isentropic relationsi. The observation that a linear extrapolation of Vv
would be a poor choice of approximation scheme, thus provides vet another suoport to the

choice of f as the thermodynamic variable 0 be approximated.

Can anv statement e made at this point about the level of accuracy of matched approximations
to ring-symmetric CRW 7 Discussing this question is contingent upon specifving some physical
teature of the flow fieid tor which a comparison will be made. Merely computing a tlow variadle.

such as Mach number. does not constitute a meaningfutl test.

For the application which motivated the present study, namelv ambient scattering, a meaningful
feature of the flow fieid would be the cumulative number of collisions that a fast moving molesuie
entering the CRW from a bordering cavitation region, can expect. This quantity is path-dependent,
so as a simplification we consider oniv ravs parallel to the X axis (constant ¥ ). The number of

collisions expected by a molecule reaching point (Xy.y,) 1s:

X
R
UXy.Yy) = J  onx.yy dx (4.3-1)
Xy
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g Where n is the number density, ¢ is the collision cross-section and X; corresponds to the
pgd  limiting characteristic. We generally assume hard-sphere collisions so that ¢ is a constant, and the
,\‘.:21 “molecular opacity” T is essentially a mass integral muitiplied by @.

The molecular opacity t(XyY,) was computed along with the computation of the flow field by
the code JET. Some lines of constant opacity were traced; two of them are shown in Figure 4-3. The
opacity in the CRW region was also computed from the matched approximation: the results compare

well with those of SIMA computations, as can be seen in Figures 4-7 and 4-8. The method by which

;:}"a 7(Xy,Y,) Was evaluated from the matched approximation is not a numerical integration. Rather, it is
) N . . . .
fLss a closed-form approximation which we now proceed to describe.
:';'&t:

Referring to Figure 4-9, the law of conservation of mass along a particular streamtube is used to
s
,:::3 establish the following relation between flow variables at points S on the characteristic line passing
? .
:::::: through (X;,¥,) and points X on the segment y=y, :
\“
ah
- n(S) u(S) sinp(S) y(S) AS = n(X) u(x) sinB(x) y, AX (4.3-2)
(AP %
l‘,
,"'7 The opacity integration (4.3-1) can thus be replaced by an integration along the characteristic line
¥ from (X_.¥) to iX,Y,) . Now, some further simplifications are introduced. enabling a closed-form
o integration for the opacity. First we assume that the entire region of interest is one of verv high

) : pd
St Mach number. so that [+¢y-1D/2M = (¢7-1)/2)M . Powers off M can he apprroximatelv

9.::"1 replaced oy approoriate powers of f. We aiso assume that ¥ and 8 do not varv greaty through

."".

ey the region of interest. so that both can be reasonabiv well approximated by their corner vaiues.
il Using the power law (3.2-7), the opacity integration is then readily pertormed. vieiding the roilowing
Jihot
g3 expression :

s

e -1 -

st " = oy 2507+ )2 -8

! UXg.Yg) = GI0.BY (¥o/¥0) [(¥o/y > 102 = 1] [ [2=8(v+ 112

£

‘ ’ .

\-’ﬁ G(0.By = 6 0.3y ¥y, / M(0.B) sinB(0.3,) siny(0.,) (4.3-3)
s
't‘?l’ . -

6 = 6(0.5,) rsee Eq.13.2-2) above)

K
‘.§ ~

W The opacity distributions shown in Figures 4-7 and 4-8 were computed from this expression. Thev

5 . compare favorably with SIMA opacitics, demonstrating that for our purpose the matched

approximation is reasonably accurate. In these JET computations the opacitv at points on the
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boundary (final) characteristic line was estimated from Eq. (4.3-3). The value of the boundary
opacity represnts the effective thickness of the "missing” layer of fluid due to terminating the
numerical computation at the characteristic having M(O,B)=Mr. The maximum value of this
boundary opacity in the typical case was found to be about 0.16 (at y/yc= 3.2 asin Fig. 4-7). This
relatively low value indicates that as far as the interaction with invading ambient molecules is
concerned, the final Mach number Mf= 34 is a reasonable substitute for Mr= 0,

We observe that Eq.(4.3-3) predicts that opacity generally peaks at some point along each
characteristic line (due to its particular dependence on y ), which in the case shown in Figure 4-8, is
confirmed by the SIMA opacity curve. An interesting feature of the expression (4.3-3) is that it is
given in a separation-of-variables form, the variables being Bo and y, that uniquely designate a
point in the CRW. We believe that this approach can be adapted to other physical problems calling
for opacity integrals in a ring-symmetric CRW .
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APPENDIX A. PRANDTL - MEYER FLOW

Denoting by B the Mach number of the fan characteristic, the Prandtl-Mever function [8] is
given by :

@ = 1" arctanf(5° - )™/ - arctan (5’ 1))
(A-1)
= (@+D/(¥-)

Ina c* wave, the Riemann invariant (v+0) is uniformly constant. This leads (after some
manipulation) to the following relations between the Mach number § and the C *  Characteristic
angle vy :

v = v + T arctan[r'? 1 (5°- 1))

(A-2)
- - , 1/2
p==1~ T [tanfw—y )l ]
Where the characteristic angle and Mach angle are given by :
wip) = 8P + )
cA-N

mpP) = arcsinP) = /2 - arctan[(pz_ l)l/z]

We now seek an expression for the distance n of a point on the transverse (C ~ 1 charactersiic
from the corner. The foilowing ditferentiai relation is derived trom ilow field zeometry ¢ Figure A-i.
in a planar CRW :

ndy = — tan(2p) dn tA-3)
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In order to replace Ay by AP, we use the following expression derived by differentiating the
relation y(PB) given in Eq.(A-5) with respect to B :

vp= = @+ B (-1 [1+@-0pT" (A-5)

Using (A-3), we eliminate Ay from (A-4), getting :
2 - -
(g = v+ D/4) B (B2-2) (8= 1) L+ r-y2p°]” (A-6)

The right hand side of (A-6) is decomposed into two partial fractions, resulting in an integral
consisting of the sum of two log functions. Thus, the dependence of | on P is the following
product of two factors, normalized to vield n(Bl) at the leading characteristic :

nd = nB {L1+ o2 i+ w02, 1 {s, - 0 -0 AT

Since n(P) s idenucai with the detinition (3.1-2) of the characteristic vanaoie o . by
diiferentiating (A-7) with respect 0 @ with f=constant. we zet Eq.(3.1-5) tor 0, .
Now we turn to the other geometrical iunction needed :n the analysis of the ring-svmmetric CRW

flow at the corner. The following geometricai relationsiip is estabiished by inspection trom Figure
A-l:

L

S = An /[ cosZp) (A=3)

Where the 3 and n increments correspond to an increment in characteristic angie w . or to an
implied increment in Mach number $. When An is replaced by AP using (A-6) and when also
cos(2p) is replaced by a P expression, we get a expression for &,!} interms of | and . The a
derivative of this last expression is Eq.(3.1-3) for i_a[, .
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¢ Figure A-l. Geometry of Characteristics and Streamlines in a Prandtl-Meyer Flow
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